Érintésvédelem Szabványossági Felülvizsgálat Minősítő irat Érintésvédelmi jegyzőkönyv Időszakos , Szerelői ellenőrzés EPH bizony

 ÉRINTÉSVÉDELEM,TŰZVÉDELEM,VILLÁMVÉDELEM,

Tel:70/610-4282 Kovács István Elemér

Érintésvédelem

 

Érintésvédelem Szabványossági Felülvizsgálat Erősáramú Villamos Berendezések Időszakos Felülvizsgálata , Tűzvédelmi Felülvizsgálat Kovács István Elemér -Érintésvédelmi Felülvizsgálat Első felülvizsgálat villamos biztonságtechnikai felülvizsgálat Lakások, családi házak elektromos hálózatának érintésvédelmi felülvizsgálata. - Háztartási gépek, érintésvédelmi felülvizsgálata. - Hegesztő gépek, transzformátorok, elektromos kéziszerszámok érintésvédelmi felülvizsgálata. - Üzlethelyiségek, üzemek, ipari létesítmények érintésvédelmi felülvizsgálata. - Üzembe helyezés előtti érintésvédelmi felülvizsgálat. - Földelők vizsgálata - EPH kialakítás vizsgálata jegyzőkönyvezés. EPH bizonylat - Érintésvédelem felülvizsgálatáról dokumentáció készítése. - Szabványossági felülvizsgálatok és szerelői ellenőrzések elvégzése. Érintésvédelmi Felülvizsgálat , szabványossági vizsgálat

 

     
54/2014 (XII.5) OTSZ
Tartalom
     
Menü
     
Bejelentkezés
Felhasználónév:

Jelszó:
SúgóSúgó
Regisztráció
Elfelejtettem a jelszót
     
Szabványossági

 

Érintésvédelem Szabványossági

Unaloműzés
elektromos motorok
Elektomos ívek
Áramütés

1. Pressenotiz

2. Pressenotiz
Earthing Design Within Buildings
eBHyx, ну сопротивление
It is possible for certain power quality.......
Liaisons équipotentielles
MAADOITTAMISEN LYHYT OPPIMÄÄRÄ
Schutzleiter
What's the problem in grounding systems used in buildings ?
WSTĘP
Wył±czniki różnicowopr±dowe
Wymagania ogólne stawiane instalacjom elektrycznym w budynkach

Magyarország városai

Bács-Kiskun megye települései
Baranya megye települései
Békés megye települései
Borsod-Abaúj-Zemplén megye települései
Csongrád megye települései
Győr-Moson-Sopron megye települései
Hajdú-Bihar megye települései
Heves megye települései
Jász-Nagykun-Szolnok megye települései
Komárom-Esztergom megye települései
Nógrád megye települései
Somogy megye települései
Szabolcs-Szatmár-Bereg megye települései
Tolna megye települései
Vas megye települései
Veszprém megye települései
Zala megye települései
Fejér megye
Pest Megye

Áramütés

Települések

Google

International

sitemap

*

5. Biztonságtechnikai ismeretek
A fáziskeresőről
A földelési ellenállás mérése I.
A földelési ellenállás mérése II.
A kismegszakítókról
A torzított hálózat és biztosítóelemei
A villamos készülékek vizsgálata
A villamos készülékek vizsgálata II.
Az EPH hálózatról
Az EPH kialakítása
Az új villámvédelmi szabvány
Az új villámvédelmi szabvány IV.
Az új villámvédelmi szabvány V.
Az új villámvédelmi szabvány*
Csatlakozó-berendezések üzembiztonsága I.
Elektromos mérések - A földelő vezetékek folytonosságának/ellenállásának ellenőrzése
Elektromos mérések ? A hálózati analizátorok
EMC villámvédelem és túlfeszültség-védelem
Érintésvédelem
Föld alatti áramok, föld feletti potenciálkülönbségek II.
Földelés és villámhárító
Javítás utáni vizsgálatok
Javítás utáni vizsgálatok II.
Javítás utáni vizsgálatok III.
Javítás utáni vizsgálatok IV.
Javítás utáni vizsgálatok IX.
Javítás utáni vizsgálatok V.
Javítás utáni vizsgálatok VI.
Javítás utáni vizsgálatok VII.
Javítás utáni vizsgálatok VIII.
Javítás utáni vizsgálatok X.
Javítás utáni vizsgálatok XI.
Javítás utáni vizsgálatok XII.
Készülékvizsgálatok gyakorlati megvalósítása és szabványossági háttere
Kismegszakító-csere
Lakatfogók újszerű szolgáltatásai
Megjegyzések a földelési ellenállással kapcsolatban
Utazás a földelés körül
Védővezetők és kábelszínek
Vezetékek terhelhetősége
Villamos elosztószekrények tűzvédelme
Villámvédelmi felülvizsgálat I.
Villanyszerelés a XXI.században
ÁRAM-VÉDŐKAPCSOLÓ (ÁVK)
KLÉSZ
szabványok
vegyes
Felülvizsgálat

 

     
ÉV a háztartásban
Érintésvédelem a háztartásban. A mai modern háztartásokban számtalan, villamos energiával működő eszköz, gép és készülék is található. Ezen eszközök azonban nemcsak szolgálják az embereket, hanem számos veszélyt is hordoznak magukban a tűzveszélytől a háztartási baleseteken át, a közvetlen életveszéllyel járó villamos áramütésig. Cikkünkben elsősorban a villamos áramütés elleni védekezésnek olyan módjaival kívánunk foglalkozni, amelyek a háztartásokban mindennaposak. Áramütésről akkor beszélünk, amikor valamely áramforrás áramköre az ember testén keresztül záródik, és ennek következtében a testen keresztül folyó áram az életműködést is veszélyezteti vagy zavarja. A háztartásban található készülékekre vonatkoztatva azt mondhatjuk, hogy a "valamely áramforrás" fogalmát a megérinthető külső burkolatoknak (pl. az automata mosógép házának,fém testének) a termék meghibásodása következtében történő feszültség alá kerülése jelenti. Érintési feszültségnek nevezzük a készülékek hibájának következtében azok külső, megérinthető felületein megjelenő feszültséget. Ennek megengedett felső határa 50 V. A veszélyhelyzet elleni védekezést nevezik hagyományosan érintésvédelemnek. Alapelv, hogy minden villamos szerkezetet el kell látni közvetett érintés elleni védelemmel. A közvetett érintés elleni védelem módszereit a szabványok érintésvédelmi osztályokba sorolással határozzák meg. Az I. Érintésvédelmi osztályba tartoznak azok a berendezések, amelyeket csak védővezetővel szabad használni. A védővezetős érintésvédelem működési elve az, hogy hiba (pl. testzárlat) esetén az adott helyen fellépő érintési feszültség nagyságát (a hibafeszültséget) csökkenti, vagy ha azt nem lehet a megengedett érték alatt tartani, akkor ezt az élettanilag veszélytelennek tartott 0,2 másodpercen belül kikapcsolja. Ezt a kikapcsolást korábban az olvadóbiztosítók, jelenleg a kismegszakítók (kisautomaták), esetleg a napjainkban legkorszerűbbnek tartott áramvédő-kapcsolók alkalmazásával lehet elérni. Az I. év. osztályba tartozó készülékek fogyasztói tájékoztatójukban utalnak arra, hogy csak védővezetővel ellátott csatlakozóaljzatokba csatlakoztathatók. A készülékek csatlakozó vezetékeire szerelt csatlakozó dugók pedig rendelkeznek oldalsó védővezető- érintkezővel. A hatályban lévő előírások szerint az épületek villanyszerelési rendszereiben minden esetben ki kell építeni a védővezetőt. II. Érintésvédelmi osztályba tartoznak azok a villamos készülékek, amelyek kettős, vagy megerősített szigeteléssel vannak ellátva. A megérinthető részek vagy műanyagból készülnek, vagy a fémburkolatok úgy vannak az üzemszerűen feszültség alatt álló részektől elszigetelve, hogy ezekre a burkolatokra veszélyes nagyságú érintési feszültség ne kerülhessen egyszeres hiba esetén. Ilyen kivitelben készülnek, pl. a villamos kéziszerszámok, vagy a háztartási készülékek jelentős része (hajszárító, kávéőrlő, porszívó, villanyborotva stb.). Ezeken a készülékeken az 1. ábra szerinti jelölés feltüntetése kötelező, és szigorúan tilos azokat leföldelni, vagy a védővezető-rendszerbe bekötni. A készülékek bekötött csatlakozóvezetékein olyan csatlakozó dugókat alkalmaznak, amelyek nem rendelkeznek védővezető-érintkezővel. III. Érintésvédelmi osztályba soroljuk azokat a készülékeket, amelyek ún. érintésvédelmi törpefeszültséggel üzemelnek. Ennek felső határa 50 V, amelyet biztonsági transzformátorral állítunk elő. A törpefeszültség használata elsősorban különösen veszélyes helyeken szükséges, pl. gyermekjátékok, szökőkutak, ill. úszómedencék világítása, áthelyezhető kerti világítórendszer stb. Amint az előzőekben már utaltunk rá, a lakóépületek villanyszerelési rendszerében minden esetben ki kell építeni a védővezetőt. Természetesen ez a követelmény csak az előírás hatályba lépése után készített új, illetve a felújított szerelésekre vonatkozik. Mivel ez az előírás már több mint 15 éve érvényes, ma már úgy tekinthetjük, hogy a lakások többségében a villanyszerelések ennek megfelelnek, bár nem zárható ki, hogy a korábbi előírások szerint az ún. melegpadlós (parketta, PVC-burkolat, padlószőnyeg stb.) helyiségekben az akkor megengedett védőérintkező nélküli, a régi fogalmak szerint "0 érintésvédelmi osztályú" csatlakozóaljzatok is még használatban vannak. Az ilyen kivitelű csatlakozóaljzatokat még gyártják és megvásárolhatók a szaküzletekben annak ellenére, hogy ma már szabványon kívülieknek tekintendők, és alkalmazásuk csak a meglévő villanyszerelési rendszerekben, a meghibásodott termékek pótlására, szorítkozhat. Új szereléseknél nem alkalmazhatók. Minden épületben vagy épületrészben ki kell alakítani egy földelőkapcsot vagy földelősínt, amely a földelővezetőknek a védővezetőkkel, valamint az ún. EPH (egyenpotenciálra hozó hálózat) csomóponttal összekötő EPH vezetővel való összekapcsolását szolgálja. Ettől a kapocstól a földelőkig tartó vezető a földelővezető, a fogyasztókészülékekig (bojler, tűzhely stb.), vagy a dugaszolóaljzatokig tartó vezetők a védővezetők. A védővezető mindig a tápvezeték egyik (zöld/sárga, vagy a régebbi berendezésekben piros szigetelésű) ere. Ennek keresztmetszete azonos a fázisvezető keresztmetszetével. Nagyon ügyelni kell arra, hogy a zöld/sárga szigetelésű vezető kizárólag csak védővezető céljára legyen felhasználva! A vezetékek színjelölésénél fontos szabály még, hogy a fázisvezetőket fekete (kábelszerű vezetékeknél esetleg barna), a nulla-vezetőket kék színű vezetékekkel kell készíteni. Különös gondossággal kell figyelni a fenti színjelölések betartására, mivel a fázisvezető és a védővezető felcserélése esetleg halálos kimenetelű áramütéses balesethez vezethet, amikor a védeni szándékozott villamos fogyasztókészülék külső burkolatán a hálózat 230 V értékű feszültsége jelenik meg, és a készülék használója azt gyanútlanul megérinti, megfogja. A védővezetős érintésvédelmi rendszerekben az előírt 0,2 másodpercen belüli lekapcsolás követelményét a testzárlati áram hatására működő túláramvédelem, vagy az áramvédő-kapcsolás teljesíti. Nagyon fontos kérdés az, hogy milyen nagyságú áramerősség működteti ezeket a kikapcsoló-eszközöket (biztosító, kismegszakító, áram-védőkapcsoló). A ma hatályos előírások szerint lakó- és kommunális építményekben túláramvédelmi célokra olvadóbiztosítót tilos alkalmazni, csak kismegszakítók felszerelése megengedett, azonban régebbi szereléseknél még előfordulhatnak olyan elosztótáblák, amelyeken olvadóbiztosítók találhatók. Az olvadóbiztosító úgy működik. hogy ha a biztosítón a megengedettnél nagyobb értékű áram folyik át, a betétben lévő fém olvadószál kiolvad és az áramkör megszakad. A különböző áramterhelési igények miatt az olvadóbetétek (2) különböző áramerősségre készülnek. A különböző betétek talpérintkezőjének mérete különböző, hogy a tervezetnél nagyobb értékű betét az aljzatba ne legyen behelyezhető. Az olvadóbetétet az aljzat feszültség alatt álló részeinek véletlen megérintésétől is védő csavarmenetes betétfejjel együtt csavarjuk be a biztosítóaljzatba. A betét fejrészén található jelzőszemet - amelynek színe utal a betét névleges áramértékére, és amely a betét kiolvadásakor leesik - a betétfej üveglapja takarja, amelyen keresztül a betét is megfigyelhető. A biztosítókat az eredetivel megegyező áramerősségű gyári új betéttel bárki, különösebb szakértelem nélkül is, kicserélheti, de semmilyen körülmények között sem szabad a betéteket áthidalni (megpatkolni), mivel ezzel tűz- és balesetveszély keletkezik. A kismegszakítók (3, 4) termikus túlterhelési és mágneses gyorskioldót tartalmaznak. Kis túláramok, túlterhelések esetén az ikerfémes (bimetallos) hőkioldó lép működésbe. A bekövetkező kioldás gyorsasága az átfolyó áram nagyságától függ. Hirtelen fellépő nagy áramok estén (rövidzárlat, testzárlat) a mágneses gyorskioldó fog működni, és a kapcsolót nagyon rövid idő alatt, gyakorlatilag azonnal leoldja. A kismegszakítók óriási előnye az olvadóbiztosítókhoz képest, hogy a hiba megszüntetése után azonnal visszakapcsolhatók, laikusok is működtethetik, ugyanakkor nincs lehetőség a megpatkolásra, vagy egyszerű módon történő áthidalására. Amennyiben a visszakapcsolás mégis sikertelen lenne, az arra utal, hogy a lekapcsolást kiváltó hiba még nem szűnt meg. Az áramvédő-kapcsoló működési elve az egy áramváltón átfűzött vezetők egymást kioltó mágneses hatásán alapul. Ha az áramváltón a befolyó és a kifolyó áramok eredője nem nulla, a szekunder tekercsében indukálódó feszültség hatására az áramvédő-kapcsoló kiold, és az áramkört megszakítja. A védőkészülék természetesen csak akkor működik, ha különös figyelmet fordítunk arra, hogy a védővezetőt semmilyen körülmények között sem szabad az áram-védőkapcsolón átvezetni. Az áram-védőkapcsoló belső felépítését a 7. ábra, az áram-védőkapcsolást a 8. ábra mutatja. A védőkapcsolók működését évenként legalább kétszer, de inkább többször ellenőrizni kell. A "T" vagy esetleg "P" jelű nyomógomb működtetésekor a készüléken belül olyan, az áramváltót megkerülő áramkört hozunk működésbe, amelynek hatására az egyensúly megbomlik, és a kioldómű működésbe lép. Ez a művelet csak a kapcsolókészülék működőképességét ellenőrzi, és nem jelenti sem a védővezető, sem a védőföldelés folytonosságát és előírás szerinti kialakítását. Az ellenőrzés végrehajtása nagyon fontos, mivel az áramvédő-kapcsoló olyan kis energiákra működő szerkezet, amelynek már kisebb oxidálódások vagy érintkezési bizonytalanságok is csökkentik érzékenységét, esetleg szükségtelen lekapcsolásokat hozhatnak létre. Az áramvédő-kapcsolók (5) különféle névleges áramra (16, 25, 40 A ), különféle hibaáram-érzékenységre (30, 100, 300 mA) és kettő vagy négypólusú kivitelben készülnek. Magyarországon a nemzetközi szabványoknak megfelelő, a rögzített szerelésre tervezett, azaz az elosztótáblákba való beépítésre szánt kivitelek használhatók. A külföldön kapható hordozható kivitelű változatok csak az adott országok előírásait elégítik ki, amelyek egyelőre még eltérnek a nemzetközi követelményektől, és ezért használatuk nem javasolható. A lakóépületekben általában közvetlenül földelt rendszereket (6) szoktak használni, amelyeknél a hálózat egyik pontja is le van földelve (ez az üzemi földelés), és a védett fogyasztókészülékek megérinthető részei is (ez a védőföldelés), de ez a két földelés nincs egymással fémesen összekötve. Az olvadóbiztosítók és kismegszakítók működése szempontjából a legjelentősebb adat az áram-idő jelleggörbe. Ezeket az adatokat azonban a termékekhez nem mellékelik a gyártók, hanem csak gyári katalógusokban teszik azokat közzé. A méretezéshez, ill. a rendszer működésének ellenőrzése céljából mégis ki kell indulni valamiből, amelynek alapja az eszközök névleges áramerősség adata lehet. Az közismert, hogy minél nagyobb a ténylegesen fellépő áramerősség, annál gyorsabb a védőeszközök kioldása (kiolvadása, ill. kikapcsolása). E legrégebbi - és ezért "klasszikus"-nak is nevezett - érintésvédelmi mód alkalmazásának az szab határt, hogy 16 A-nál nagyobb névleges áramerősségű olvadóbiztosító, vagy 10 A-nál nagyobb névleges áramerősségű kismegszakító esetén a védőföldelés megengedett földelési ellenállásértéke 1 Ohm-nál kisebbre adódik, ilyen kis szétterjedési ellenállású földelést pedig a gyakorlatban nem nagyon lehet készíteni. Más a helyzet, ha az érintésvédelmi kikapcsolást nem bízzuk a túláramvédelemre, hanem áramvédő-kapcsolókat alkalmazunk. Egy 100 mA érzékenységű áramvédő-kapcsolónál, pl. 50 V/0,1 A = 500 ohm ellenállás értékű földelés megvalósítása az előírásoknak megfelelő működést hoz létre. Az áram-védőkapcsolóknak a két névleges áramerősség adata közül az érzékenységnek is nevezett névleges kioldó-hibaáram azt jelenti, hogy ez az a különbözeti áram vagy hiba-áram, amelynek fellépése esetén a készülék már üzembiztosan kikapcsol. Az érintésvédelem méretezésénél ezt az értéket kell figyelembe venni függetlenül attól, hogy a valóságban már ennél kisebb áramerősségre is működik. Az áram-védőkapcsolók alkalmazására vonatkozóan fontos tudnivaló még, hogy a kioldó-hibaáram nem az az érték, amely a balesetet szenvedett személy testén átfolyik, hanem legfeljebb ekkora mértékű áram folyhat a védőföldelés felé a védővezetőn. Ez az áram hozza létre a földelési ellenálláson átfolyva a fogyasztókészülék megérinthető külső részein fellépő érintési feszültséget, miközben a védőkapcsoló kikapcsol. Az alkalmazandó áram-védőkapcsoló kiválasztásánál lényeges szempont lehet a felszerelés helyén használt fogyasztókészülékek jellege is. Az alapkivitelű áram-védőkapcsolók ugyanis csak a tiszta váltakozó áramú, azaz szinuszos hibaáramokra érzékenyek. Az ilyen védőkapcsoló nem fog kioldani abban az esetben, ha a hálózaton olyan félvezetős készülékek hibásodnak meg, amelyek az áramkörben lüktető (pulzáló) egyenáramú EPH nyilatkozat összetevőket hoznak létre (pl. fényerő-szabályozók, fordulatszám-szabályozós kéziszerszámok stb.). Az ilyen fogyasztókészülékeket is tápláló áramkörökben minden esetben olyan áramvédő-kapcsolókat kell felszerelni, amelyekre a gyártó az ilyen hibaáramok fellépésekor is garantálja az üzembiztos működést. Az áram-védőkapcsolók a gyakorlati alkalmazásban jól beváltak, szakszerű felszerelés, bekötés és üzemeltetés esetében mindig megbízhatóan működnek, ezért viszonylag magas fogyasztói áruk ellenére is javasoljuk minél szélesebb körben történő alkalmazásukat.Érintésvédelmi Felülvizsgálat Jegyzőkönyv EPH-bekötésről, A vizsgálat helye:helység..út/utca/tér.sz.em..ajtó A tulajdonos neve:A vizsgálat oka, szükségessége: EPH kiépítés új épületben, régi épületben új gázhálózat kiépítése esetén MINDIG szükséges megfelelő EPH jegyzőkönyv (új gázmérő hely, új gázkészülék, új fogyasztói vezeték) EPH megfelelőségi bizonylat meglévő gázmérő esetén akkor szükséges EPH jegyzőkönyv, ha gázkészülék flexibilis csővel lett beszerelve (csere, bővítés alkalmával). Megfelelő EPH jegyzőkönyv kell akkor is, ha cirkót kád fölé szerelnek és a készülék érintésvédelmi besorolása rosszabb, mint IP45, IPX5, illetve csak fröccsenő víz ellen védett, függetlenül attól, hogy mivel lett bekötve (akár fixre, akár flexibilis csővel). A gázcsőrendszerre épületen belül rákötött gázkészülékek Típusa Helye Érintésvédelmi védővezetőbe be van kötve Gázbekötése. EPH (Egyen Potenciálra Hozás) A felhasznált flexibilis cső vezetőképessége igen nem fix flexi gyárilag szavatolt egyedileg kialakított min. 5 mm2 Az épületben kialakított EPH csomópont helye:Megtekintés alapján a csomópont kialakítása megfelelő nem megfelelő Megtekintés alapján az EPH gerincvezeték kialakítása: megfelelő nem megfelelő Az itt felsorolt, üzembe helyezett (erősáramú csatlakozású) gázkészülékek érintésvédelmi védővezetőjének folytonosságát ellenőriztem. A csatlakozó és fogyasztói gázvezeték a gázmérő helynél megfelelő keresztmetszetű védővezetővel át van kötve. Az EPH kialakítást villamos szempontból megfelelőnek*nem megfelelőnek*minősítem. (* a kíván részt megjelölni)Dátum .A vizsgálatot végezte:Címe: ÉV. vizsgabizonyítvány száma:P.H.a felülvizsgáló aláírása A nyilatkozatot átvettem: 200 a megrendelő aláírása megrendelői minősége(gázfogyasztó, ingatlantulajdonos, beruházó stb.)

 

     
Hírek/Cikkek
Hírek/Cikkek : Javítás utáni vizsgálatok VI.

Javítás utáni vizsgálatok VI.


 

Érintésvédelem Szabványossági Felülvizsgálat

7.51. Vizsgálati program

 

A védővezető ellenőrzése (7.52.) után a szigetelés vizsgálati lehetőségek figyelembe vételével a következő vizsgálatokat ajánlott elvégezni:

-     ha a szigetelési ellenállás mérés (7.53.) elvégzése műszakilag lehetséges és megfelelő eredményű, akkor:

§         az I. év. osztályú  készülékeknél védővezető-áram mérését (7.55.) vagy szivárgó áram mérését (7.57.) vagy hordozható kéziszerszámok esetében esetében villamos szilárdság
vizsgálatot (7.54.),

 

§         a II. év. osztályú készülékeknél és a védővezetőhöz nem csatlakozó megérinthető vezetőképes részekkel rendelkező I. év. osztályú készülékeknél érintési áram mérését (7.56.) vagy szivárgóáram mérését (7.57.), vagy hordozható kéziszerszámok esetében esetében villamos szilárdság vizsgálatot (7.54.);

-     ha a szigetelési ellenállás mérés műszakilag nem lehetséges, akkor:

§         az I. év. osztályú készülékeknél védővezető áram mérést (7.55.),

 

§         a II. év. osztályú készülékeknél és a védővezetőhöz nem csatlakozó megérinthető vezetőképes részekkel rendelkező I. év. osztályú készülékeknél érintési áram mérést (7.56).

-     végül: működési próbával illetve a szükség szerinti egyéb vizsgálatokkal zárul a vizsgálati program.

 

7.52. A védővezető ellenállásának mérése

 

A védővezető vizsgálatát a védővezetővel rendelkező készülékeknél minden esetben szükséges elvégezni!

A vizsgált készüléket minden esetben galvanikusan le kell választani a hálózatról. Áramforrás: 24 V egyen vagy váltakozó feszültségű áramforrás, a méréskor nem lehet több a feszültség, mint 24 V és nem lehet kevesebb, mint 4 V. A mérőáram legalább 0,2 A legyen.

 

A védővezető ellenállásának megengedett legnagyobb értékei:

-     0,3 W          az 5 m hosszú csatlakozó vezetékkel rendelkező készüléknél

-     0,1 W          minden további 7,5 m-enként

-     1,0 W          a megengedett legnagyobb ellenállás érték

 

1          mérőberendezés

2          vizsgálandó készülék

3          biztosítók

4          Dugaszoló aljzat

9          mérővezetékek

 

A mérési elrendezést értelemszerűen lehet alkalmazni a többfázisú készülékeknél is!

 

 

 

 

 

 

 

 

 

 

 

 


7. a) ábra. Hordozható I. év. o. készülék védővezető ellenállásának mérése

 

 

 

 

 

 

 

 

 

 

 

 

 

 


7. b) ábra. Helyhezkötött, I. év. osztályú, hálózathoz csatlakoztatott készülék védővezető ellenállásának mérése

7. ábra. Példák a védővezető ellenállásának mérésére

 

7.53. Szigetelési ellenállás mérés

A szigetelési ellenállás mérést az arra műszakilag alkalmas készülékeken minden esetben szükséges elvégezni! A vizsgálat során figyelembe kell venni a 7.42. szakasz előírásait is.

A szigetelési ellenállást az aktív részek és a megérinthető vezetőképes részek között kell mérni úgy, hogy a készülék kapcsolóját bekapcsoljuk, ugyanakkor a táphálózatról minden póluson leválasztjuk a készüléket.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. a) ábra. Hordozható I. év. osztályú készülék esetén

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. b) ábra. Helyhezkötött, csatlakozódugóval vagy sorozatkapoccsal a hálózathoz csatlakoztatott I. év. osztályú készülék esetén

 

1          Mérőberendezés

2          Vizsgálandó készülék

3                    Biztosító vagy leválasztási hely

5          Vezeték vagy csatlakozás leválasztva

6.1       II. és III. év. osztályú készülék esetén mérés a 
           megérinthető vezetőképes részek és az             aktív részek között (8. c) ábra)

6.2       I. év. osztályú készülékek esetén mérés a
           védővezeőhöz nem csatlakozó megérinthető             vezetőképes részek és az aktív részek között
           (8. a) és b) ábra)

9          Mérővezetékek

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


8. c) ábra. Hordozható II. vagy III. év. osztályú készülék esetén

8. ábra. Példák a szigetelési ellenállás mérésre

 

A szigetelési ellenállás mérés mérőfeszültsége nem lehet kevesebb, mint 500 V egyenfeszültség,  0,5 MW terhelő ellenállás mellett. A megengedett legkisebb szigetelési ellenállás értékek a következők:

 

-     0,3 MW,     I. év. osztályú hőkészülék bekapcsolt fűtőelemekkel. Ha egy I. év. osztályú                 hőkészüléknek, amelyiknek a beépített összteljesítménye 3,5kW - a                                szigetelési ellenállása nem éri el az itt megadott értéket akkor fogadható el az                      eredménye, ha a védővezető áram mérési eredménye megfelelő,

-     1,0 MW,     minden más I. év. osztályú készülék,

-     2,0 MW,     II. év. osztályú készülékek és megérinthető vezetőképes részek az I. év.                                 osztályú készülékeknél, amelyek nincsenek összekötve a védővezetővel,

-     0,25 MW,   a III. év. osztályú készülékek esetében.

7.54. Villamos szilárdság vizsgálat

E vizsgálatsorozat keretében a villamos szilárdság vizsgálatokat csak a kézben tartott és a hordozható villamos kéziszerszámok esetében szabad elvégezni, akkor, ha a szigetelésvizsgálatok elvégzése műszakilag lehetséges és megfelelő eredményűek. A vizsgálat során figyelembe kell venni a 7.42. szakasz előírásait is.

A vizsgálatokat 50 Hz-es szinuszos váltakozó feszültséggel kell elvégezni. Az áramkörbe iktatott túláram relének meg kell szólalni ha legfeljebb 5 mA-t eléri a kimenő áram értéke. A nagyfeszültséget előállító transzformátor olyan legyen, hogy egy adott próbafeszültséghez tartozó rövidzárlati áram legalább 10-szerese legyen a túláram relé megszólalási áramának.

 

Előírt próbafeszültségek:

-     1000 V       I. év osztályú készülékek,

-     3500 V       II. év. osztályú készülékek esetén.

 

A próbafeszültséget 3 másodpercig kell alkalmazni az aktív részek és a megérinthető fémrészek között. A vizsgálatok alatt nem szabad átütésnek, átívelésnek bekövetkeznie és a túláramrelé sem szólalhat meg.

 

7.55. Védővezető-áram mérése

 

A védővezető-áram mérése hálózati feszültséggel történik. Mérési módszerek:

 

-     közvetlen mérési eljárással, lásd: 9. a) ábra

-     különbözeti áramméréssel, lásd: 9. b) ábra

 

A közvetlen mérési eljárásnál a vizsgált készüléket el kell szigetelni a földpotenciáltól, ezért azt szigetelő állványra kell helyezni, és minden olyan kapcsolatot le kell választani a vizsgált készülékről, amely föld potenciált vihetne rá (mint pl. gáz- és vízvezeték, esetleges antenna vagy más információtechnikai összeköttetések stb.). A vizsgálat során intézkedni kell a veszélyes érintési feszültségek ellen. A közvetlen mérési eljárásnál az alkalmazott mérőberendezés belső ellenállása legfeljebb 5 W legyen, ennél nagyobb belső ellenállás esetén intézkedni kell a veszélyes érintési feszültségek elkerüléséről.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


9. a) ábra. Közvetlen mérési eljárás, hordozható I. év. osztályú készülék esetén

 

1          Mérőberendezés

2          Vizsgált készülék

8          Szigetelő állvány (a 9.a) ábrán)

9          Mérővezetékek

 

 

 

 

 

 

 

 

 

 

 

 

 

 


9. b) ábra. Különbözeti áram mérési eljárás, hordozható I. év. osztályú készülék esetén

9. ábra. Példák a védővezető-áram mérésére

 

Ha a készülék csatlakozó dugójának polaritása nincs meghatározva, akkor a csatlakozó dugó, illetve a csatlakozó vezeték minden pozíciójában el kell végezni a mérést, és a különböző mért értékek közül a legnagyobbat kell figyelembe venni mint eredményt. (A mért áram effektív értékű.)

 

A védővezető-áram értéke nem lehet nagyobb mint 3,5 mA, kivéve a következő eseteket:

-     a 3,5 kW összteljesítménynél nagyobb teljesítményű hőkészüléknél a védővezető áram nem lehet nagyobb mint 1 mA/kW, a hőteljesítményre vonatkoztatva

-     tűzhelyek, főzőedények, asztali főzőkészülékek, sütőkemencék, hőtárolós kályhák és hasonló készülékek esetében az aktív részek és a megérinthető fémrészek közötti áram       7 mA lehet, a nagyobb mint 6 kW összteljesítményű készülékeknél pedig legfeljebb         15 mA,

-     a rögzített hálózati csatlakozású készülékek vagy az MSZ EN 60309 szabvány szerinti ipari csatlakozó dugóval felszerelt készülékek esetében különleges felszerelési előírások lehetnek, ezért más védővezető-áram értékek is megfelelők lehetnek,

-     a termékszabványnak megfelelő készülékeknek is nagyobb lehet a védővezető-árama, ha különleges védővezető csatlakozást alkalmaznak.

7.56. Érintési áram mérése

 

Az érintési áramot minden megérinthető vezetőképes részen meg kell mérni. Ugyancsak el kell végezni a mérést az I. év. osztályú készülékek védővezetővel össze nem kötött megérinthető vezetőképes részein is. A mérés során a vizsgált készüléket a hálózatoz kell csatlakoztatni.

 

Mérési módszerek:

-     közvetlen mérési eljárás a 10. a), 10. b) ábra szerint, vagy

-     különbözeti áram mérési módszer a 10. c) ábra szerint.

 

Az I. év. osztályú készülékek védővezetővel össze nem kötött megérinthető vezetőképes részeinek vizsgálat

Még nincs hozzászólás.
Csak regisztrált felhasználók írhatnak hozzászólást.
     
Dr.Mode

https://www.facebook.com/DirtyRockMode

     

Dryvit, hõszigetelés! Vállaljuk családi házak, nyaralók és egyéb épületek homlokzati szigetelését! 0630/583-3168 Hívjon!    *****    A legfrissebb hírek a Super Mario világából és a legteljesebb adatbázis a Mario játékokról.Folyamatosan bõvülõ tartalom.    *****    Gigágá! Márton napján is gyertek a Mesetárba! Nemcsak libát, de kacsát is kaptok! Játsszatok velünk!    *****    A Nintendo a Nintendo Music-kal megint valami kiváló dolgot hozott létre! Alaposan nagyító alá vettem, az eredmény itt.    *****    Leanderek, Parfümök, Olajok, és Szépségápolási termékek! Használd a LEVI10 kupont és kapj 10% kedvezményt!Megnyitottunk    *****    Megjelent a Nintendo saját gyártású órája, a Nintendo Sound Clock Alarmo! Ha kíváncsi vagy, mit tud, itt olvashatsz róla    *****    Megnyílt a webáruházunk! Parfümök, Szépségápolási termékek, Olajok mind egy helyen! Nyitási akciók, siess mert limitált!    *****    Az általam legjobbnak vélt sportanimék listája itt olvasható. Top 10 Sportanime az Anime Odyssey-n!    *****    Pont ITT Pont MOST! Pont NEKED! Már fejlesztés alatt is szebbnél szebb képek! Ha gondolod gyere less be!    *****    Megnyílt a webáruházunk! NYITÁSI AKCIÓK! Tusfürdõ+Fogkrém+Sampon+Izzadásgátló+multifunkcionális balzsam most csak 4.490!    *****    Új mese a Mesetárban! Téged is vár, gyere bátran!    *****    Veterán anime rajongók egyik kedvence a Vadmacska kommandó. Retrospektív cikket olvashatsz róla az Anime Odyssey blogban    *****    Parfümök, Olajok, Párologtatók mind egy weboldalon! Siess mert nyitási AKCIÓNK nem sokáig tart! Nagy kedvezmények várnak    *****    Dryvit, hõszigetelés! Vállaljuk családi házak, nyaralók és egyéb épületek homlokzati szigetelését! 0630/583-3168 Hívjon!    *****    Aki érdeklõdik a horoszkópja után, az nem kíváncsi, hanem intelligens. Rendeld meg most és én segítek az értelmezésben!    *****    A Múzsa, egy gruppi élményei a színfalak mögött + napi agymenések és bölcseletek    *****    KARATE OKTATÁS *** kicsiknek és nagyoknak *** Budapest I. II. XII.kerületekben +36 70 779-55-77    *****    Augusztus 26-án Kutyák Világnapja! Gyertek a Mesetárba, és ünnepeljétek kutyás színezõkkel! Vau-vau!    *****    A horoszkóp elemzésed utáni érdeklõdés, nem kíváncsiság hanem intelligencia. Rendeld meg és nem fogod megbánni. Katt!!!    *****    Cikksorozatba kezdtem a PlayStation történelmérõl. Miért indult nehezen a Sony karrierje a konzoliparban?